# Energy Dissipation and Phase-Space Dynamics in Eulerian Vlasov-Maxwell Shocks and Reconnection



# Energy Dissipation and Phase-Space Dynamics in Eulerian Vlasov-Maxwell Shocks and Reconnection



Funded by AGS-1622306

#### Outline

- Introductory material
  - Describe Gkeyll and numerical method
  - Collision operator and magnetic pumping
  - Field-particle correlations
- Non-relativistic, collisionless transverse shock
  - Particle heating
  - Entropy production



# The Gkeyll (and Hyde) Framework\*

"It is one thing to mortify curiosity, another to conquer it."

- The Gkeyll framework is flexible suite of solvers for plasma physics being developed at the Princeton Plasma Physics Lab, UMD, Virginia Tech, and MIT
- Solvers include a finite volume method for equations written in conservative form and a discontinuous Galerkin finite element method for systems of equations which can be written in terms of a Poisson bracket
- Multiple Vlasov-Maxwell publications already:
  - P. Cagas, A. Hakim, J. Juno, B. Srinivasan, Continuum kinetic and multi-fluid simulation of a classical sheath, *Phys. Plasmas* (2017).
  - P. Cagas, A. Hakim, B. Srinivasan, Nonlinear saturation of the Weibel instability, *Phys. Plasmas* (2017).
  - J. Juno, A. H. Hakim, J. M. TenBarge, B. Dorland, E. L. Shi, Discontinuous Galerkin algorithms for fully kinetic plasmas. *JCP* (2018).
  - I. Pusztai, J. M. TenBarge, A. N. Csapo, J. Juno, A. Hakim, L. Yi, T. Fulop, Low Machnumber collisionless electrostatic shocks and associated ion acceleration, PPCF (2018)
  - V. Skoutnev, A. Hakim, J. Juno, J. M. TenBarge, Temperature Dependent Saturation of Weibel Type Instabilities in Counter-Streaming Plasmas, ApJL in press
  - A. Sundstrom, J. Juno, J. M. TenBarge, and I. Pusztai. Effect of a weak ion collisionality on the dynamics of kinetic electrostatic shocks, JPP (2019)
  - J. Juno and A. Hakim, Generating a Quadrature and Matrix-free Discontinuous Galerkin algorithm for (plasma) kinetic equations, In preparation.
  - A. Hakim, M. Francisquez, J. Juno, G. W. Hammett, Conservative Discontinuous Galerkin Schemes for Nonlinear Fokker-Planck Collision Operators, In preparation



#### The Discontinuous Galerkin Finite Element Method

We choose to use the discontinuous Galerkin framework to discretize the full phase space of the Vlasov-Maxwell system because it combines aspects of -Finite elements: high order accuracy and ability to handle complicated geometries

-Finite volume: locality of data and stability enforcing limiters







## The Discrete Vlasov Equation

What does the discontinuous Galerkin discretization of the Vlasov equation look like?

$$\frac{\partial f_s}{\partial t} + \nabla \cdot (\mathbf{v}f_s) + \nabla_v \cdot (\mathbf{F}_s f_s) = 0$$

- Consider a phase space mesh  $\mathcal T$  with cells  $K_j \in \mathcal T, j=1,\dots,N$ .
- Then the problem formulation is, find  $f_h \in \mathcal{V}_h^p$ , such that for all  $K_j \in \mathcal{T}$ ,

$$\int_{K_{j}} w \frac{\partial f_{h}}{\partial t} d\mathbf{z} + \oint_{\partial K_{j}} w^{-} \mathbf{n} \cdot \hat{\mathbf{F}} dS - \int_{K_{j}} \nabla_{z} w \cdot \alpha_{h} f_{h} d\mathbf{z} = 0$$

$$f_{h}(\mathbf{z}, t) = \sum_{n}^{N_{p}} F_{n}(t) w_{n}(\mathbf{z}) \qquad \mathcal{V}_{h}^{p} = \{ v : v | K_{j} \in \mathbf{P}^{p}, \forall K_{j} \in \mathcal{T} \},$$

Upwind fluxes are used for the streaming term and a relaxed global Lax-Friedrichs flux is used for the acceleration

$$\mathbf{n} \cdot \hat{\mathbf{F}} = \frac{1}{2} \mathbf{n} \cdot \left( \boldsymbol{\alpha}_{h}^{+} (f_{h}^{+} + f_{h}^{-}) - \boldsymbol{\tau} (f^{+} - f^{-}) \right)$$
where  $\tau = \max_{\mathcal{T}} \left( \frac{q}{m} \mathbf{E}_{h} + \frac{q}{m} \mathbf{v} \times \mathbf{B}_{h} \right)$ 

note that the phase space flux is continuous at corresponding surface interfaces

# The Discrete Vlasov Equation

What does the discontinuous Galerkin discretization of the Vlasov equation look like?

$$\frac{\partial f_s}{\partial t} + \nabla \cdot (\mathbf{v}f_s) + \nabla_v \cdot (\mathbf{F}_s f_s) = 0$$

- Consider a phase space mesh T with cells  $K_j \in T, j = 1, ..., N$ .
- Then the problem formulation is, find  $f_h \in \mathcal{V}_h^p$ , such that for all  $K_j \in \mathcal{T}$ ,

$$\int_{K_{j}} w \frac{\partial f_{h}}{\partial t} d\mathbf{z} + \oint_{\partial K_{j}} w^{-} \mathbf{n} \cdot \hat{\mathbf{F}} dS - \int_{K_{j}} \nabla_{z} w \cdot \alpha_{h} f_{h} d\mathbf{z} = 0$$

$$f_{h}(\mathbf{z}, t) = \sum_{n}^{N_{p}} F_{n}(t) w_{n}(\mathbf{z}) \qquad \mathcal{V}_{h}^{p} = \{ v : v | K_{j} \in \mathbf{P}^{p}, \forall K_{j} \in \mathcal{T} \},$$

#### **Conserves**

Number density Energy

L2 norm of the distribution decays monotonically

**Cost Mitigation** 

Lua-JIT & C++

Computer algebra pre-generated kernels
MPI + MPI-3 shared memory
Reduced basis sets

# Serendipity Finite Elements [Arnold & Awanou (2011)]

- We use the Serendipity finite element basis set to mitigate the curse of dimensionality cost but retain the same formal convergence order
- Monomials with super-linear degree greater than p are dropped

• Consider 
$$d=3$$
,  $p=2$ : Retain  $x^2yz$  Drop  $x^2y^2z$ 

$$N_p = \sum_{i=0}^{\min(d, p/2)} 2^{n-i} \binom{d}{i} \binom{p-i}{i}$$



# Collision Operator in Gkeyll

$$\frac{\partial f_s}{\partial t} + \nabla \cdot (\boldsymbol{v} f_s) + \nabla_{\boldsymbol{v}} \cdot (\boldsymbol{a}_s f_s) = \left(\frac{\partial f_s}{\partial t}\right)_c$$

$$\left(\frac{\partial f_s}{\partial t}\right)_c = C[f] = -\frac{\partial}{\partial v_i} \left(\langle \Delta v_i \rangle_s f_s\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \partial v_i} \left(\langle \Delta v_i \Delta v_j \rangle_s f_s\right)$$

Full Fokker-Planck form

$$\langle \Delta v_i \rangle_s = -v_{ss}(v_i - u_{s,i}) - \sum_{r \neq s} v_{sr}(v_i - u_{sr,i})$$

Lenard-Bernstein (Dougherty)

$$\langle \Delta v_i \Delta v_j \rangle_s = 2 v_{ss} v_{th,s}^2 \delta_{ij} + \sum_{r \neq s} 2 v_{sr} v_{th,sr}^2 \delta_{ij}$$

# Collision Operator in Gkeyll

$$\frac{\partial f_s}{\partial t} + \nabla \cdot (\boldsymbol{v} f_s) + \nabla_{\boldsymbol{v}} \cdot (\boldsymbol{a}_s f_s) = \left(\frac{\partial f_s}{\partial t}\right)_c$$

$$\begin{pmatrix} \partial f_s \\ \end{pmatrix} = C[f] - \frac{\partial}{\partial t} \begin{pmatrix} \langle \Delta \boldsymbol{v} \rangle & f \end{pmatrix} + \frac{1}{2} \frac{\partial^2}{\partial t}$$

Full Fokker-Planck form

$$\left(\frac{\partial f_s}{\partial t}\right)_c = C[f] = -\frac{\partial}{\partial v_i} \left(\langle \Delta v_i \rangle_s f_s\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \partial v_j} \left(\langle \Delta v_i \Delta v_j \rangle_s f_s\right)$$

$$\langle \Delta v_i \rangle_s = -v_{ss}(v_i - u_{s,i}) - \sum_{r \neq s} v_{sr}(v_i - u_{sr,i})$$

Lenard-Bernstein (Dougherty)

$$\langle \Delta v_i \Delta v_j \rangle_s = 2v_{ss} v_{th,s}^2 \delta_{ij} + \sum_{r \neq s} 2v_{sr} v_{th,sr}^2 \delta_{ij}$$

#### **Conserves**

- Number density
- Momentum
- Energy

#### **Satisfies**

- Discrete H-Theorem
- Maximum entropy is numerical Maxwellian





# Magnetic Pumping [Lichko et al ApJL (2017)]

$$L_x = 200\sqrt{2}\pi\rho_e, |v_{max}^e| = 8\sqrt{2}v_{th}^e$$
 $T_e/T_i = 1, \beta = 0.01, \mathbf{B}(t=0) = B_0\hat{\mathbf{z}}$ 
 $m_i/m_e = 1836, c/v_A^e = 4$ 
 $(n_x, n_{vs}^3) = (256, 24^3) \ p = 2$ 

$$\boldsymbol{J} = \mathbf{\hat{y}} J_0 \sin^2 \left(0.5\pi \, \min(1, \omega_{\text{ramp}} t)\right) \sin(\omega_{\text{pump}} t) \left[ \exp\left(-\frac{(x - x_1)^2}{2\sigma_J^2}\right) - \exp\left(-\frac{(x - x_2)^2}{2\sigma_J^2}\right) \right]$$

$$\omega_{pump} = 0.1\Omega_{ce}, \ \sigma_J = L_x/n_x, \ J_0/enc = v_A^e/2c$$



Field Particle Correlations

$$\frac{\partial f_s}{\partial t} + v \frac{\partial f_s}{\partial x} - \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_s}{\partial v} = 0$$

$$f_s(x, v, t) = f_{s0}(v) + \delta f_s(x, v, t)$$

Separation useful in some cases but not necessary

$$\frac{\partial \delta f_s}{\partial t} = -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v}$$

Multiply by mv<sup>2</sup>/2 and integrate to obtain the energy equation

$$\frac{\partial W_s}{\partial t} = \int dx \int dv \frac{1}{2} m_s v^2 \left[ -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v} \right]$$

$$\frac{\partial W_s}{\partial t} = \int dx \int dv \frac{1}{2} m_s v^2 \frac{\partial f_s}{\partial t}$$

$$\frac{\partial f_s}{\partial t} + v \frac{\partial f_s}{\partial x} - \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_s}{\partial v} = 0$$

$$f_s(x, v, t) = f_{s0}(v) + \delta f_s(x, v, t)$$

$$\frac{\partial \delta f_s}{\partial t} = -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v}$$

$$\frac{\partial W_s}{\partial t} = \int dx \int dv \frac{1}{2} m_s v^2 \left[ -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v} \right]$$

$$\frac{\partial W_s}{\partial t} = \int dx \int dv \frac{1}{2} m_s v^2 \frac{\partial f_s}{\partial t}$$

In terms of fluid moments

$$\frac{1}{2}\frac{\partial P}{\partial t} = -\nabla \cdot \frac{\mathbf{Q}}{2} + qn\mathbf{u} \cdot \mathbf{E}$$

$$\frac{\partial f_s}{\partial t} + v \frac{\partial f_s}{\partial x} - \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_s}{\partial v} = 0$$

$$f_s(x, v, t) = f_{s0}(v) + \delta f_s(x, v, t)$$

$$\frac{\partial \delta f_s}{\partial t} = -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v}$$

$$\frac{\partial W_s}{\partial t} = \int dx \int dv \frac{1}{2} m_s v^2 \left[ -v \frac{\partial \delta f_s}{\partial x} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial f_{s0}}{\partial v} + \frac{q_s}{m_s} \frac{\partial \phi}{\partial x} \frac{\partial \delta f_s}{\partial v} \right]$$

$$\frac{\partial W_s}{\partial t} = -\int dx \int dv \ q_s \frac{v^2}{2} \frac{\partial \delta f_s(x, v, t)}{\partial v} E(x, t) = \int dx \int dv \ q_s v \delta f_s(x, v, t) E(x, t)$$

$$\frac{\partial W_s}{\partial t} = -\int dx \frac{\partial \phi}{\partial x} \int dv \ q_s v \delta f_s = \int dx \ j_s E$$

$$\frac{\partial W_s}{\partial t} = -\int dx \int dv \ q_s \frac{v^2}{2} \frac{\partial \delta f_s(x, v, t)}{\partial v} E(x, t) = \int dx \int dv \ q_s v \delta f_s(x, v, t) E(x, t)$$

The field particle correlation: 
$$C_1(v,t,\tau) = C_{\tau} \left( -q_s \frac{v^2}{2} \frac{\partial \delta f_s(x_0,v,t)}{\partial v}, E(x_0,t) \right)$$

Alternative for cases in which df/dv is difficult to compute

$$C_2(v,t,\tau) = C_\tau \left( q_s v \delta f_s(x_0,v,t), E(x_0,t) \right)$$

In discrete form

$$C_1(v, t_i, \tau) = \frac{1}{N} \sum_{j=i}^{i+N} q_s \frac{v^2}{2} \frac{\partial \delta f_{sj}(v)}{\partial v} E_j$$

$$t_j \equiv t(j\Delta t) \qquad \qquad \tau = N\Delta t,$$

Note that f or δf can be used

$$\frac{\partial W_s}{\partial t} = -\int dx \int dv \ q_s \frac{v^2}{2} \frac{\partial \delta f_s(x, v, t)}{\partial v} E(x, t) = \int dx \int dv \ q_s v \delta f_s(x, v, t) E(x, t)$$

The field particle correlation:  $C_1(v,t,\tau) = C_{\tau} \left( -q_s \frac{v^2}{2} \frac{\partial \delta f_s(x_0,v,t)}{\partial v}, E(x_0,t) \right)$ 

Alternative for cases in which df/dv is difficult to compute

$$C_2(v,t,\tau) = C_\tau \left( q_s v \delta f_s(x_0,v,t), E(x_0,t) \right)$$

In discrete form

$$C_1(v, t_i, \tau) = \frac{1}{N} \sum_{j=i}^{i+N} q_s \frac{v^2}{2} \frac{\partial \delta f_{sj}(v)}{\partial v} E_j$$

$$t_j \equiv t(j\Delta t) \qquad \qquad \tau = N\Delta t,$$

Other quantities that will appear:

$$\Delta w_s = \int_0^t (\partial w/\partial t') dt'$$

Note that f or δf can be used

#### Field-Particle Correlations Parallel and Perpendicular

In three dimensions, the field-particle correlation can be split into parallel and perpendicular portions. The interpretation of the correlation is simplest in gyrotropic space.

$$C_{E}(\mathbf{v}) = C(-q\frac{v^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}}, \mathbf{E}) = C(-q\frac{v_{\parallel}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial v_{\parallel}}, E_{\parallel}) + C(-q\frac{v_{\perp}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}_{\perp}}, \mathbf{E}_{\perp})$$

$$C_{E_{\parallel}}(v_{\parallel}, \mathbf{v}_{\perp}) = C(-q\frac{v_{\parallel}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial v_{\parallel}}, E_{\parallel})$$

$$C_{E_{\perp}}(v_{\parallel}, \mathbf{v}_{\perp}) = C(-q\frac{v_{\perp}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}_{\perp}}, \mathbf{E}_{\perp})$$

$$C_{E_{\parallel}}(v_{\parallel}, \mathbf{v}_{\perp}) = C(-q\frac{v_{\perp}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}_{\perp}}, \mathbf{E}_{\perp})$$

$$C_{E_{\parallel}}(v_{\parallel}, \mathbf{v}_{\perp}) = C(-q\frac{v_{\parallel}^{2}}{2}\frac{\partial f(\mathbf{v})}{\partial \mathbf{v}_{\perp}}, \mathbf{E$$

Gyrotropic  $(v_{\parallel},v_{\perp})$  velocity-space signatures: AstroGK turbulence simulation for (a) Landau damping using  $C_{E_{\parallel}}$  and (b) transit-time damping using  $C_{\delta B_{\parallel}}$ ; HVM turbulence simulation for (c) cyclotron damping using  $C_{E_{\perp}}$ ; theoretical prediction for (d) stochastic ion heating using  $C_{E_{\perp}}$ ; AstroGK strong-guide field reconnection simulation for (e) ion and (f) electron energization using  $C_{E_{\parallel}}$ .

# MMS FPC [Chen et al Nature Comm (2019)]

In three dimensions, the figoritions. The interpretation

$$C_E({f v})=C(-qrac{v_{\parallel}^{2}}{2})$$
  $C_{E_{\parallel}}(v_{\parallel},{f v}_{\perp})=C(-qrac{v_{\parallel}^{2}}{2})$ 









### Transverse Shock Simulation Setup

#### Injection method to initialize the shock

$$f_i$$

$$t = 2500\Omega_{ce}^{-1}$$

$$400$$

$$500$$

$$10$$

$$v_y/v_{ti}$$

$$-10$$

$$-10$$

$$v_x/v_{ti}$$









### Transverse Shock Evolution



# Transverse Shock Evolution





# Transverse Shock Evolution, Electrons











# Transverse Shock Evolution, Ions













#### Conclusions

- Using the continuum Vlasov-Maxwell simulation portion of Gkeyll, we have successfully performed fully kinetic simulations of collisional magnetic pumping and a 1x-2v, collisionless transverse shock.
- The location and source of electron entropy production and heating in the transverse shock has been identified.
- We have employed the field-particle correlation analysis technique to identify the phase space structure of the energy transfer between the fields and particles.
- In most cases, the dominant source of particle energization seen with the field-particle correlation technique is cyclotron-like dissipation, which is most intense at the shock crossing.